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Abstract 
Clustering, particularly text clustering, in data mining 

has been attracting a lot of attention of late. There have 

been conventional techniques like K-means, which 

involve parameters that can’t be easily estimated. With 

the emergence of density-based clustering algorithms 

which have significant advantages, a lot of attention 

has been devoted to them. OPTICS [1] is the latest and 

most sophisticated technique in this direction, and has 

been shown to be considerably tolerant to value 

changes in parameters. To the best of our knowledge, 

this is the first study on the applicability of OPTICS on 

text data. We perform a variety of experiments towards 

this end using various feature selection techniques 

(which,as we show, assume greater significance in the 

context of density based clustering), quantify our results 

by way of explanations and list conclusions.  

1. Introduction 

Clustering is a classical data mining task which aims at 

grouping data such that elements in the same group are 

more similar to each other than elements∆ which are in 

different groups. With the exploding volume of text 

data due to the advent of the Web, clustering 

unstructured text documents has become a very useful 

task. Density based clustering has gained a lot of 

attention of late, mainly due to its numerous advantages 

over traditional clustering techniques like K-means [2]; 

most significantly due to the fact that density based 

algorithms don’t require the number of clusters (the 

difficulty of estimating which has been widely 

acknowledged [3,4]) as input and can discover non-

convex clusters as opposed to K-Means. Secondly, 

density-based algorithms usually provide a clustering 

[5] rather than a dendrogram (e.g., hierarchical 

agglomerative clustering, HAC) [6] which doesn’t map 

to an obvious unique clustering. Hierarchical 

algorithms, apart from their scalability problems (due to 

quadratic complexity) require a termination condition 

[7] to determine when to stop merging. Thirdly, 

density-based algorithms such as OPTICS [1] have 

been shown to be useful for hierarchical clustering of 

late [8]. It may be noted here that OPTICS is cheaper 

(computationally) compared to HAC [9] when a spatial 

                                                 
∆
 Work done while doing internship at IBM India 

Research Lab 

index is used. Although these advantages have been 

demonstrated by various researchers using synthetic 

low-dimensional datasets, this, to the best of our 

knowledge, is the first attempt on using density based 

clustering algorithms on text data apart from a vague 

related mention that density-based clustering methods 

may not scale well with increase in dimensions [10]. 

 

Section 2 reviews various density-based clustering 

algorithms. Sections 3 and 4 describe the performance 

measures and feature selection techniques used 

respectively. Section 5 describes our experiments with 

OPTICS. Section 6 lists the major contributions and 

conclusions. 

2. Density Based Clustering Algorithms   

Density based clustering methods cluster data based on 

a local cluster criterion such as density connected 

points. Typically, density based algorithms can discover 

clusters of arbitrary shapes and are relatively noise-

tolerant. DBSCAN [5], the earliest density based 

clustering algorithm, introduces many concepts which 

are used by later density based clustering algorithms. It 

classifies points as core points if they have many data 

elements in their vicinity.  Thereafter, a cluster can be 

represented by the set of core points it contains. The 

algorithm can identify clusters of arbitrarily shape 

opposed to K-Means and its variants. DENCLUE [11], 

a generalization of DBSCAN associates each data 

element with an influence function wherein clusters can 

be identified as regions which have high densities with 

respect to the influence function. Another algorithm, 

CURE [12] extends K-means, to allow multiple 

representative points for a single cluster 

2.1 OPTICS [1] 

OPTICS produces an augmented ordering of the 

elements in the dataset representing its clustering 

structure and has been shown to be quite insensitive to 

the input parameters [1] (as opposed to pre-OPTICS 

algorithms) provided that the values of the parameters 

are large enough to get a ‘good’ result. OPTICS builds 

a reachability plot, in which valleys correspond to 

clusters. The OPTICS plot is the plot of data elements, 

against their reachability distance, data elements 

ordered according to the time at which OPTICS stops 

considering them. The reachability distance of an 



element is determined by the distance to its nearest core 

point which has already been considered by OPTICS. 

Relative insensitivity to parameters (which enables it to 

identify clusters of varying densities) was the main 

motivation for us to choose OPTICS from among other 

density based algorithms for our experiments. 

Secondly, it has been shown that OPTICS can be used 

for hierarchical clustering [13]. Finally, OPTICS would 

work well in all cases where DBSCAN and DENCLUE 

would work well, although the vice versa isn’t true. 

 

Figure 1. OPTICS Plot Example 

Clusters can be identified [1] from the OPTICS 

reachability plot as a sequence of points which forms a 

valley (a region bounded by a downward slope 

followed by an upward slope). Such an algorithm 

causes an artificial reduction in cluster purity in cases 

of dense-sparse cluster interactions due to the inability 

to distinguish the sparse cluster from the dense cluster. 

Further, it may put a data element in multiple clusters 

which is undesirable for performance evaluation. 

Seeking to redeem these problems, we put forward our 

Simple Cluster Identification algorithm assumption as 

follows. The algorithm is intuitively derivable.  

“Simple Cluster Identification Algorithm” assumes 

that a cluster is a maximal sequence of points in the 

OPTICS plot which have comparable OPTICS values. 

A sequence of points have comparable values if the 

OPTICS values of the extreme points, i.e., those 

which have extreme OPTICS values, are not more 

than “e” apart in their OPTICS (reachability) values. 

SCI identifies a sequence of points with “close” 

OPTICS values as a cluster and may split nested 

clusters, retaining the purity of the OPTICS clustering.  

We argue that SCI defines an upper bound on the purity 

(Ref. Section 3) of the clustering that can be given by 

any of the state-of-the-art algorithms for cluster 

identification [14] from the OPTICS plot. It may 

however be noted, that the average cardinality of the 

clusters identified by SCI would be much lower than 

that given by other algorithms and hence, the SCI 

clusters are not particularly useful. Extremely pure SCI 

clusters would give us enough confidence to go ahead 

and try out other cluster identification algorithms, 

whereas low values of purity would enable us to infer 

that OPTICS isn’t well-suited for text data. 

3. Performance Measures Used 

Purity of a Cluster: The purity of a cluster [15] is the 

fraction of documents labeled with the maximally 

represented label in the cluster.  
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dc(ci) is the number of documents with label ci in c.  

Purity of a set of Clusters: The purity of a set of clusters 

is defined as the weighted sum of the purities of the 

clusters [15], each cluster (represented by C1, C2 etc in 

the formula below) weighted by its cardinality.  

∑

∑

=

=
=

k

i

i

k

i

ii

k

C

CCPurity

CCCPurity

1

1
21

||

||)*(

),...,,(
 

Coverage: It is defined as the fraction of the dataset, D 

that is clustered by the Clustering algorithm, C. 

Coverage is of significance because the quality of the 

clustering is meaningful only when a large majority of 

data elements are clustered. Reduction in coverage may 

be caused, both due to the feature selection technique 

and the inability of the density based algorithm to 

cluster some data elements.  
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4. Feature Selection Methods used 

The inherent high-dimensionality of text data, where 

each unique word is considered as a feature, makes 

feature selection all the more important. The main 

feature selection techniques that we deployed in the 

course of our experiments are Information Gain (IG) 

[16], Document Frequency (DF) [17], Dash-Liu 

Entropy (DL) [17,18], Entropy Based Ranking (EBR) 

[19] and Scaled Entropy [26]. We use the IG measure, 

which assumes existence of class label information, as a 

benchmark to test the performance of other 

unsupervised feature selection algorithms.  

5. OPTICS on Reuters flat Clusters 

In this section, we present the methodology, results and 

observations of our experiments with OPTICS on text 

data. We use the Reuters dataset [20] for our 

experiments. Only the documents uniquely labeled by 

one of “crude”, “trade”, “grain”, “money-fx”, “ship” 



and “interest” were used. This subset (R6 dataset) has 

1570 documents which contain 11019 unique words. 

5.1 OPTICS with Unsupervised Feature 

Selection 

We test the performance of the OPTICS-SCI 

combination on the R6 dataset using four different 

unsupervised feature selection methods, DF, EBR and 

SE. It may be noted that the number of features used in 

these experiments is in the order of 10 – 100 and thus 

we use only less than 1% of the original set of features.  
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Figure 2. OPTICS-SCI on Selected Features: Purities 
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Figure 3. OPTICS -SCI on Selected Features: Average 

Cardinalities 

The first striking observation (Figs. 2 and 3) is that the 

purity decreases by large proportions as the number of 

features considered increases. But with the decrease in 

the number of features considered, it was found that the 

coverage decreases drastically, especially for EBR and 

SE techniques. Deterioration with increase in the 

number of dimensions cannot be done away with as it is 

a property of the OPTICS algorithm. Therefore, the 

target of optimization would be in selecting features for 

consideration.  

5.2 OPTICS with Supervised Feature Selection 

As the earlier experiment suggests the usage of a much 

reduced feature space (say, 10-20 features), we use DL, 

EBR, SE and IG methods to do so. Good performance 

on a highly reduced feature space may mean that better 

unsupervised feature selection may aid OPTICS.  
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Figure 4.  OPTICS-SCI on Selected Features: Purities 
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Figure 5. OPTICS-SCI on Selected Features: Average 

Cardinalities 

As can be seen (Figs 4 and 5), with 20 of the supervised 

features, a purity of 0.75 is achievable using IG. This 

might be regarded as an upper bound on the 

performance any optimization (on unsupervised feature 

selection techniques) could give based on the 

assumption that unsupervised feature selection would 

not work better than IG [21].  

5.3 K-Means on Reduced Feature Sets 

We now experiment with the K-means algorithm using 

CLUTO [22] to gauge the performance of the 

algorithms which we would like OPTICS to compete 

with. We use the IG and the EBR feature selection 

methods on the R6 dataset.  Here we use the same 

amount of features as in Section 5.1 
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Figure 6. K-Means on Selected Features: Purities 

As can be seen (Fig. 6), purity of the clusters is directly 

related to the number of features. This is contrary to our 



observation in the case of density based clustering 

algorithms where they are inversely related. This 

represents a significant finding, that K-means clustering 

works better with more features, whereas OPTICS 

deteriorates with the increase in the number of features. 

5.4 OPTICS and Random Projections 

As our next step in trying to get OPTICS working, we 

proceed to use simpler methods to select features. It has 

been proved repeatedly that the Occam’s razor does 

work well in more cases than not. A classical example 

in this case is random projections [23]. We project the 

data on various random directions and get the clustering 

results from these directions and combine the results 

using the following algorithm.  

Table 1. Aggregating Clusterings: The Algorithm 

Aggregate-Clusterings(Set of Clusterings, {C1,..Ck}) 

{ 

    Any two documents <di,dj> are linked must-link if 

they occur in the same cluster in the majority of the k 

clusterings taken as input; 

    The aggregated clustering would be the transitive 

closure of the must-links  thus generated; 

} 

 

This algorithm, we would argue, plays safe and is 

optimized towards getting clusters of better purity 

rather than in clustering most of the data. The R6 

dataset (pruned to 500 features using IG feature 

selection, to get an upper bound on performance) used 

for the experiments, details of which comprise Table 2. 

Table 2. Experiments using Random Projections 

Experiment Methodology 

Clusterings allclusterings = nullset; 

for(i=0;i<11;i++) 

{ 

     Project data on 10 random normalized directions; 

     Apply the OPTICS-SCI combo to get clustering C; 

     allclusterings = allclusterings U C; 

} 

Apply the clustering aggregation algorithm on 

allclusterings; 

Output the results; 

Table 3. Results with Random Projections 

Results 

Purity: 0.82 

Average Cardinality: 1.71 

After discarding clusters of size less than < 3 

Purity: 0.69 

Average Cardinality: 3.92 

 

The results do not mark a significant improvement of 

performance over the previous experiments. The 

average cardinality of the clusters is too low to infer 

anything from the purity values.  

6. Contributions and Conclusions  

As a part of this work, we implemented an analyzed 

OPTICS on text data and gathered valuable insights 

into the working of OPTICS and it’s applicability on 

text data. The SCI algorithm presented in this paper to 

identify clusters from the OPTICS plot can be used as a 

benchmark to test for the performance of OPTICS 

based on purity and coverage performance measures. 

Further, we have shown that the Scaled Entropy 

measure works considerably better than the EBR 

feature selection technique. We also present a method 

to aggregate different clusterings which can be used to 

arrive at a soft upper-bound on the purity of the 

clustering achievable by the combination of different 

clusterings. Having tried the various different feature 

selection techniques with OPTICS and not having 

arrived at good results (to match K-Means and 

variants), we deem ourselves competent enough to 

conclude that it is very less probable to get OPTICS 

working well on text data.  

 

Many results of reasonable significance could be 

derived out of this study. Firstly, the fact that K-means 

works well on text data clustering implies that the bias 

of K-means that clusters are convex, does hold good in 

text data. It shows that the idea of a cluster being 

represented by its core points which enables OPTICS to 

identify non-convex clusters hasn’t worked too well. 

This can be read in tune with the apprehension that the 

documents, regardless of their clusters, tend to be 

separated by the roughly the same distances in higher 

dimensions [24]. Secondly, OPTICS is worst affected 

by the increase in dimensionality whereas K-means 

benefits by the same. This follows from the fact that K-

means improves and OPTICS deteriorates with the 

increase in dimensionality. This provides a very 

important pointer for future work with OPTICS, i.e., 

feature selection is almost an inevitable pre-processing 

step for OPTICS like algorithms and the better the 

feature selection, better would be the performance. 

Thirdly, our results raise some serious questions about 

the validity of the OPTICS assumptions. OPTICS 

borrows the DBSCAN idea of a crisp classification of 

data elements into core elements and non-core 

elements. It has been shown that each cluster clusters 

well in a small set of dimensions [25] which can be 

considered as characteristic dimensions of the cluster. 

With the addition of many more dimensions, as does 

happen in a high-dimensional setting, different clusters 

get distorted by different measures. Thus, a single 



global value for e or minPts is rendered insufficient 

even for OPTICS, which is very insensitive to 

parameter values. This leads to the requirement of a 

fuzzy characterization of points as core or non-core, or 

a learning technique which can roughly identify the 

different parameter values for different regions in the 

vector space.  

 

Future work in this area would include trying various 

other techniques for dimensionality reduction and 

improved techniques for feature selection to get the 

OPTICS algorithm working on text data. Further we are 

contemplating exploration of other techniques that do 

not require the number of clusters (as an input 

parameter) and their applicability to text data.  
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